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Only one atom thick and not inclined to lattice defects, graphene represents the ultimate crystalline mem-
brane. However, its structure reveals unique features not found in other crystalline membranes, in particular the
existence of ripples with wavelength of 100–300 Å. Here, I trace the origin of this difference to the free
electrons in the membrane. The deformation energy of the lattice creates a coupling between charge fluctua-
tions and the structure, resulting in ripples on the membrane, correlated with charge inhomogeneities. In
graphene this mechanism reproduces the experimental result for both charge puddles and ripples.
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Physical membranes are objects in which one of the di-
mensions is small compared to the other two, giving them an
effective two-dimensional �2D� character. An intriguing class
of physical membranes is that of the crystalline membranes,
that have a solid structure, usually of a triangular or hexago-
nal 2D lattice.1

Beautiful examples of such systems, which spread in
magnitude and scale, exist in our world. In biology, a famous
example is the cytoskeleton of red blood cells, whose struc-
ture is vital for the operation and stability of the cell, which
forms a triangular crystalline lattice built of spectrin proteins.
In soft condensed matter, one can create crystalline lattices
by polymerizing liquid interfaces.1 Recently, an ingenious
experimental method, using mechanical cleavage, has con-
quered the final limit, isolating grapheme—a single layer of
carbon atoms, organized in a hexagonal lattice.2 The same
method has since been used to isolate individual crystal
planes of other layered materials.3

With such a vast variety of crystalline membranes in na-
ture, it is of no surprise that understanding the structural
properties of these systems has attracted the attention of
many physicists.1,4–12 The fact that graphene can be used to
construct nanometer-sized electronic applications, has only
enhanced the need of a profound understanding of its
structure.13 This interest intensifies, in view of the Mermin-
Wagner theorem, which forbids the existence of long-range
order in 2D systems due to diverging thermal vibrations.
This seeming contradiction between experiment and theory,
which peaked with the discovery that graphene is stable even
when it is free standing, i.e., without the support of a
substrate,14 is resolved by allowing out-of-plane fluctuations,
that induce frustration between the large thermal vibrations
in 2D and the competing gain in elastic energy. This frustra-
tion stabilizes a globally flat phase at finite temperatures.1

This “almost-flat” phase is characterized by a scale invariant
structure, at wavelengths much longer than a characteristic
size �T= 2��

�K0kBT
, determined by the bending energy �, and the

2D-Young modulus K0 �T is the temperature�.1,4–11 However,
experimental studies of graphene have revealed rather differ-
ent features.

Meyer et al.14 isolated a free-standing graphene, thus
demonstrating its long-range order and stability. Further-
more, they used transmission electron spectroscopy to study

its structure. Their finding, which was since reproduced by
other experimental groups, is that the graphene sheet exhibits
spontaneous rippling, with amplitude of about 3–10 Å and
wavelength estimated to be �=100–300 Å.14–16 Lattice de-
fects were not found and thus cannot account for this nonva-
nishing curvature.14,17 Considering the fact that in graphene
�T�12 Å, these ripples clearly violate the scale invariance
that should govern at this scale.

As graphene is the ultimate crystalline membrane, this
difference has to be addressed theoretically. In this Rapid
Communication, I suggest that the ripples in graphene are a
signature of the fact that it is not a regular crystalline mem-
brane, since it has an additional degree of freedom—the free
electrons that occupy its � band—thus it is a representative
of a different class of materials—electronic crystalline mem-
branes, in which an interplay exists between the electronic
and structural degrees of freedom.18,19 This interplay leads to
the excitation of ripples in electronic crystalline membranes
in general, and graphene in particular.

To reach this conclusion, I start by modeling the “almost-
flat” phase of a membrane. In-plane deformations are char-
acterized by a two-dimensional vector field u� , and out-of-
plane deformations by a field h. When considering the
equilibrium state of the electronic crystalline membrane,
without allowing charge fluctuations in the conduction elec-
trons, the mesoscopic structure of the membrane can be de-
scribed by thermal fluctuations around this equilibrium using
the elastic free energy,

F�u,h� =
1

2
� d2x�����2h�2 + 2�uij

2 + �uii
2� , �1�

where uij is the strain tensor, uij =
1
2 ��iuj +� jui�+ 1

2 ��ih��� jh�
�summation over repeated indices is implied throughout the
manuscript�. The coefficients are the 2D elastic properties of
the membrane. In graphene, experiments have verified this
approximation, as no lattice defects were found even at
strains �10%,14,17 and the elastic constants were estimated:
a bending energy ��1.1 eV, bulk modulus
�+��7.3 eV Å−2, and shear modulus ��5.7 eV Å−2

�Ref. 20� �the resulting Young modulus is
K0= 4���+��

2�+� �13 eV Å−2�. � and � were estimated from the
sound velocities. These elastic properties originate in the �
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band, which is a consequence of the in-plane sp2 hybridiza-
tion, that forms a deep valence band, and partly by the �
band, which is perpendicular to the plane. This was also
verified by Monte Carlo simulations with realistic, though
phenomenological, interatomic potentials �that cannot take
into account charge fluctuations�.21–23 An additional verifica-
tion that Eq. �1� indeed describes such simulations, is due to
the fact that the structure of graphene predicted by them
exactly fits the theory of crystalline membranes, quantita-
tively predicting the scale invariance and the anomalous ex-
ponents of the bending energy and elastic constants at long
wavelengths23 however unable to reproduce the ripples.
Thus, the ripples have a different origin.

The free electrons, which in graphene occupy the half-
filled � band, differentiate an electronic crystalline mem-
brane from regular crystalline membranes. Indeed, the free
electrons couple to the structure through a deformation en-
ergy. The source of this deformation potential is the local
change in the Fermi energy measured from the bottom of the
valence band, proportional to the local change in area �S.
The resulting deformation potential has the form Vs=D �S

a2

=Duii �a is the nearest-neighbor distance�, where D is the
Fermi energy of the 2D electron gas.24 In graphene this de-
formation energy was found to be the main source of devia-
tions of the electrical transport properties from ballistic trans-
port. The specific value of D is a matter of debate. However,
using charge-carrier mobility measurements of electron
doped graphene, one achieves a value of D�29 eV, which
compares well with other estimates of this energy.25

In the presence of spatially varying density of �-electrons
�n�x��, the deformation energy is just 	d2x�Duii�x���n�x��.32 The
structure of the electronic membrane is thus determined by
the following free energy:

F�u,h,�n� = Eee��n� +
1

2
� d2x����2h�2

+
1

2
� d2x��2�uij

2 + �uii
2 + 2Duii�n� , �2�

where Eee is the electron-electron energy due to the charge
density. The free energy evidently couples between elastic
deformations and charge inhomogeneities.

In order to understand the behavior of this system, let us
first concentrate in the electron-electron interaction. Charac-
terizing this interaction is not a trivial task as it includes a
solution of a strongly correlated many-body problem. How-
ever, one can estimate it by

Eee =
e2

2E� � d2xd2y
�n�x���n�y��


x� − y�

=

2�e2

2E � d2q�

�2��2


�n�q��
2

q
,

�3�

with e the charge of the electron, the static dielectric constant
E �originates from screening of the electron-electron interac-
tion�, and �n�q�� a Fourier transform of �n�x��. The value of
the static dielectric constant is not fully known, since the
effective fine-structure constant in graphene is of order unity.
Recent perturbative analysis of the electron-electron screen-
ing by Kotov et al.26 has shown that the static dielectric

constant is E�3–4. However, they demonstrated that the
perturbative analysis receives large corrections at higher or-
ders of perturbation theory, concluding that additional
screening is expected in the nonperturbative solution. Here, I
will take this value as a starting point for the analysis, and
examine the effect of increasing the value of the static di-
electric constant on the final conclusions.

The theory is now quadratic in the charge fluctuations and
thus can be written as

F�u,h,�n� =
1

2
� d2q�

�2��2�2�e2

Eq
��n�q� +

DEq

2�e2uii�2

+ �q4
h�q��
2 + 2�
uij
2 + ��q�
uii
2
 , �4�

where ��q���− D2E
2�e2 q. The theory is Gaussian also in the

in-plane deformation field u� , thus these degrees of freedom
can be integrated out, resulting in an effective free energy
that depends only on the out-of-plane deformations,

Fef f�h� =
1

2
� d2q�

�2��2 ��q4
h
2 + K�q�	2� , �5�

where 	�h�x��= 1
2 ��ij −

�i� j

�2 ��ih� jh and K�q� is an effective
Young modulus, given by

K�q� = K0

1 −
2� + �

� + �

q

q0

1 −
q

q0

�6�

Clearly, for long wavelengths �corresponding to q→0�
K�q�→K0, implying that long-wavelength sound waves can
be used to measure the elastic constants, as they appear in
Eq. �1�, neglecting the effects of possible formation of charge
inhomogeneities.

In order to investigate the possibility of ripple excitations,
one is interested in the behavior of the electronic crystalline
membrane at finite wavelengths. Observing Eq. �6�, it is
clear that interesting phenomena occur around the length
scale 
0= 2�

q0
� D2E

e2�2�+�� . In particular, for q0�q�
�+�

2�+�q0, the
effective Young modulus is negative, thus representing a true
competition with the bending energy ���2h�2, allowing
height fluctuations. In order to quantify this, one has to solve
the thermodynamics of the system described by Eq. �5�.

In general, Dyson equations can be written for the
scale evolution of the effective bending rigidity
�R�q����q4�
hq
2��−1, and Young modulus KR�q�,

�R�q�
�

= 1 + �qT

q
�2


�q� , �7�

�KR�q�
K0

�−1

= �K�q�
K0

�−1

+
1

2
�qT

q
�2

��q� . �8�

Here, qT=�K0kBT

�2 , 
�q� is the sum of all 1PI two-point dia-
grams, and ��q� is the sum of all 1PI four-point diagrams.
These equations determine the structure of the electronic
crystalline membrane. Evidently, two intrinsic length scales
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exist, i.e., q0, originating in the electronic degrees of free-
dom, and qT, in which thermal effects become significant.
The existence of the scale q0 differentiates electronic crystal-
line membranes from regular crystalline membranes, whose
structure is controlled only by the thermal scale. In the cur-
rent case, however, there is an interplay between the two
length scales.

As aforementioned, K�q�→K0 for q�q0. Hence, in this
limit, the Dyson equations reduce to the usual case of regular
crystalline membranes, extensively studied particularly in the
thermodynamic limit L→� �q→0� �see, e.g., Refs. 1 and
4–12�. As a result, electronic crystalline membranes, for
which this limit corresponds to the regime q� �q0 ,qT�, in-
herit the same behavior at long wavelengths, i.e., have a
stable, asymptotically flat, phase, with the 1PI diagrams gov-
erned by anomalous exponents, viz. 
�q��q2−� and
��q��q2−�u, with ��0.8 and �u=2−2�.

However, the behavior outside this regime, and especially
about the electronic scale q0, is governed by the special func-
tional structure of the Young modulus �cf. Eq. �6��. In par-
ticular, Eq. �8� shows that the formal structure of the effec-
tive Young modulus survives the scale evolution, i.e., there
always exists a region of negativity for the young modulus,
with a zero at q= �+�

2�+�q0 and a singularity around q�q0. As
a result, the physics at q�q0 will be governed by this length
scale, rather than qT. Due to this, as well as the fact that finite
q behavior is of interest, we calculate 
�q� in the one-loop
approximation �P denotes principal value�,


�q� = P� d2k�

�2��2

K�qk�
K0


q̂ � k̂
4


q̂ − k�
4
. �9�

We search for maximum in the normal-normal
correlation function: G�q���
n̂q
2�=kBT / ��R�q�q2�
= �� /K0���q /qT�2+
�q��−1 as it indicates enhanced correla-
tion, which will manifest itself as ripples on the membrane,21

if the maximum is pronounced, i.e., if its width is smaller
than the characteristic wavelength. The amplitude of the
ripples is determined by the maximal value of the
correlation.

The resulting dimensionless normal-normal correlation
function K0G�q� /�, as shown in Fig. 1 for various tempera-
tures, presents a rather pronounced peak. The main tempera-
ture dependence is in qT, since simulations suggest rather
weak temperature dependence of the elastic constants and the
bending rigidity.22 Evidently, the temperature dependence of

G�q� vanishes for q�0.02 Å−1. This signatures the onset of
the long-wavelength regime, where the one-loop approxima-
tion given here is expected to fail. Comparing the value of
the correlation function at this wavelength to its maximal
value is a measure of the amplitude of the ripples. It can be
seen that the ripples are more pronounced for higher tem-
peratures, and have shorter wavelength. The width of the
correlation maximum weakly depends on the temperature, as
it is mainly affected by the electronic length scale q0, rather
than the thermal one. The temperature dependence should be
further investigated, taking into account changes in other ef-
fects, e.g., defect formation and elastic constants.


0= 2�
q0

holds the largest uncertainty in the model, due to
the static dielectric constant. Thus, in Fig. 2 the wavelength
maximizing the correlation function is plotted as a function
of 
0 �at room temperature�, for a physical range of values of
this parameter, chosen around 
0�D=29 eV, E=4��20 Å.
As seen in the plot, the maximal correlation occurs for wave-
lengths in the range 
=100–300 Å. This wavelength region
reproduces the ripples found in experiments on suspended
graphene.14–16

Thus, one expects a stable, asymptotically flat, phase
which exhibits charge fluctuations and ripples, with the same
correlation length. The character of this correlation can be
analyzed through Eqs. �4� and �5�, where the charge fluctua-
tions and in-plane deformations were integrated out. The av-
erage values of these integrated out observables are readily
recovered, and a relation between the average charge fluc-
tuation and the average lattice deformation is established
��n�� �S�h�x���, where S�h�=−�2	 is the Gaussian curva-
ture of the surface. This is a key difference between the
current work and previous theoretical studies of the correla-
tion between charge puddles and height fluctuations, e.g.,
Ref. 18, that found that charge fluctuations are proportional
to the mean curvature, i.e., to �2h �indeed, a recent
experiment27 did not find such a correlation�.

In suspended graphene, no experiment has studied both
the topology and the charge inhomogeneity together. How-
ever, the correlation lengths of the two disorder phenomena
were measured in different experiments, finding ripples with
characteristic size of 100–300 Å,14–16 and a correlation
length of 300 Å for charge puddles.28 In the latter experi-
ment, though graphene was suspended on top of SiO2, it was
shown that the substrate had no effect on the structure of the
charge puddles. Experiments that probed both phenomena
simultaneously were accomplished only for graphene on top
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FIG. 1. �Color online� The normal-normal correlation function
as a function of the wave number q for different temperatures.
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FIG. 2. �Color online� Ripples wavelength as a function of the
parameter 
0= D2E

e2�2�+�� .
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of SiO2 substrate27,29 but have shown significant substrate
effects. It is important to note that in a setting where the
graphene is located very close to the substrate, its structure
and its charge fluctuations would be pinned to the surface
structure and impurities on the substrate, and not as dis-
cussed here. In addition, the current work discusses neutral
graphene. Doping is analog to external stress whose sign
corresponds to the majority charge carriers, thus decreasing
�increasing� the rippling in the case of electron �hole�
doping.19 This effect can explain the results of Ref. 29,
where the graphene sheet was doped by an external gate
voltage. A different external source for ripples in graphene is
adsorption of molecules.19,30 The current work is different
since it proposes the electrons as an intrinsic source for
ripples at thermodynamic equilibrium.

In conclusion, charge puddles and ripples in graphene are
found to be a signature of the fact that graphene is not a
regular crystalline membrane but the herald of a class of
materials—electronic crystalline membranes, demonstrating

strong interplay between the dynamics of the free electrons
in the membrane and its mesoscopic structure. Clearly, this
implies that had the � electrons not been free, the ripples
would vanish. Indeed, graphane, an insulating graphene de-
rivative in which each carbon atom is connected to a hydro-
gen atom, was found to exhibit reduced corrugations.31

This Rapid Communication offers a theoretical approach
to characterize the two main intrinsic disorder phenomena in
graphene, i.e., charge inhomogeneity and structural deforma-
tions. As graphene is promising material for technological
use, understanding disorder phenomena and correlations
among them is essential for a successful design and quality
control of future applications.
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